Quasi-Linear Cellular Automata
نویسنده
چکیده
Simulating a cellular automaton (CA) for t time-steps into the future requires t serial computation steps or t parallel ones. However, certain CAs based on an Abelian group, such as addition mod 2, are termed linear because they obey a principle of superposition. This allows them to be predicted efficiently, in serial time O(t) or O(log t) in parallel. In this paper, we generalize this by looking at CAs with a variety of algebraic structures, including quasigroups, non-Abelian groups, Steiner systems, and others. We show that in many cases, an efficient algorithm exists even though these CAs are not linear in the previous sense; we term them quasilinear. We find examples which can be predicted in serial time proportional to t, t log t, t log t and tα for α < 2, and parallel time log t, log t log log t and log t. We also discuss what algebraic properties are required or implied by the existence of scaling relations and principles of superposition, and exhibit several novel “vector-valued” CAs.
منابع مشابه
Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملNumber-conserving cellular automata I: decidability
We prove that de6nitions of number-conserving cellular automata found in literature are equivalent. A necessary and su9cient condition for cellular automata to be number-conserving is proved. Using this condition, we give a quasi-linear time algorithm to decide number-conservation. c © 2002 Elsevier Science B.V. All rights reserved.
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملBulking II: Classifications of cellular automata
This paper is the second part of a series of two papers dealing with bulking: a way to define quasi-order on cellular automata by comparing space-time diagrams up to rescaling. In the present paper, we introduce three notions of simulation between cellular automata and study the quasi-order structures induced by these simulation relations on the whole set of cellular automata. Various aspects o...
متن کامل